Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-N-tert-Butyl-C-(2,3,4-trimethoxyphenyl)nitrone

Hao Guo,* Mark Zabawa, Joyce Woo, Chong Zheng and Qingwei Yao

Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA Correspondence e-mail: hguo@niu.edu

Received 17 May 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.124; data-to-parameter ratio = 14.3.

The title compound, C₁₄H₂₁NO₄, was synthesized in 91% yield by condensation of 2,3,4-trimethoxybenzaldehyde and N-tertbutylhydroxylamine acetate in the presence of triethylamine as the base and anhydrous magnesium sulfate as the dehydrating agent. The structure features a benzene ring and side chains. The C=N double bond leads to a planar C=N(-O)-C group; this group is not coplanar with the benzene ring. The N=C- C_{ar} - C_{ar} torsion angle is 10.2 (2)°.

Related literature

For related literature, see: Floyd (2006); Jasen (1971); Merino & Padwa (2004); Soldaini et al. (2007); Torsell (1988); Usuki et al. (2006); Yao et al. (2007); Zhang et al. (2000).

Experimental

Crystal data

$\gamma = 82.108 \ (3)^{\circ}$
V = 731.5 (2) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 (2) K
$0.50 \times 0.40 \times 0.40$ mm

Data collection

Siemens SMART CCD PLATFORM diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2000) $T_{\min} = 0.857, T_{\max} = 0.965$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	179 parameters
$wR(F^2) = 0.124$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
2563 reflections	$\Delta \rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3}$

5580 measured reflections

 $R_{\rm int} = 0.017$

2563 independent reflections

2189 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Thomas DeLegge and Derek Janssen also contributed to this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ3042).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Floyd, R. A. (2006). Aging Cell, 5, 51-57.

Janzen, E. G. (1971). Acc. Chem. Res. 4, 31-40.

Merino, P. & Padwa, A. (2004). Sci. Synth. 27, 511-580.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Soldaini, G., Cardona, F. & Goti, A. (2007). Org. Lett., 9, 473-476.

Torsell, K. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, Novel Strategies in Synthesis. Weinheim: VCH Publishers, Inc.

Usuki, T., Nakanishi, K. & Ellestad, G. A. (2006). Org. Lett. 8, 5461-5463. Yao, Q., Zabawa, M., Woo, J. & Zheng, C. (2007). J. Am. Chem. Soc. 129, 3088-3089

Zhang, H., Joseph, J., Vasquez-Vivar, J., Karoui, H., Nsanzumuhire, C., Marta, P., Sek, P., Tordo, P. & Kalyanaraman, B. (2000). FEBS Lett. 473, 58-62.

supplementary materials

Acta Cryst. (2007). E63, o3552 [doi:10.1107/S1600536807031674]

(Z)-N-tert-Butyl-C-(2,3,4-trimethoxyphenyl)nitrone

H. Guo, M. Zabawa, J. Woo, C. Zheng and Q. Yao

Comment

Nitrones are versatile organic compounds widely used as 1,3-dipoles in cycloadditions, (Merino & Padwa, 2004; Torsell, 1988) spin trapping agents in free radical chemistry (Jasen, 1971; Usuki et al., 2006) and also in biological studies. (Zhang et al., 2000) Recently they have also been employed as therapeutics in age-related diseases. (Floyd, 2006) Nitrones undergo many reactions, such as the Behrend Rearrangement, nitrone-oxime O-ether rearrangement, and thermolytic alkene elimination. (Torsell, 1988) While the most conventional procedures for the preparation of nitrones have been the condensation of N-monosubstituted hydroxylamines with carbonyl compounds and the N-alkylation of oximes. (Torsell, 1988) a newly reported high yielding and chemoselective procedure for the conversion of imines to nitrones using catalytic amounts of methyltrioxorhenium represents a breakthrough in nitrone synthesis. (Soldaini et al., 2007) We have recently shown that nitrones derived from aromatic aldehydes can be used as convenient precursors to carbocyclic carbene ligands for the synthesis of novel and catalytically useful Pd compounds. (Yao et al., 2007) The formation of nitrone-based Pd complexes involves the selective C-H activation of the aromatic ring via orthopalladation directed by the oxygen atom on the nitrone moiety. It can be expected that the stereochemistry around the C=N of the nitrone group would have a pronounced effect in formation of the Ccarbene-Pd bond as we believe that the oxygen initially ligates the palladium species and directs the subsequent ortho-palladation. For this purpose, we have prepared the title compound and its structure analyzed by X-ray crystallography. The C7=N1 double bond leads to a plane containing C8, O1, N1, C7 and C6 which is not coplanar with the phenyl ring; the torsion angle N1 - C7 - C6 - C1 is -10.2 (3) °.

Experimental

An oven-dried Schlenk flask was charged with 2,3,4-Trimethoxybenzaldehyde (196 mg, 1.0 mmol), *N-tert*-butyl hydroxylamine acetate (298 mg, 2.0 mmol) and anhydrous magnesium sulfate (362 mg, 3.0 mmol) under argon. Triethylamine (350 μ L, 253 mg, 2.5 mmol) was then added *via* syringe followed by anhydrous benzene (6 ml, distilled from sodium/benzophenone). After stirring at 90°C in a Schlenk flask for 8 days, the reaction mixture was filtered to remove the magnesium sulfate and the filtrate concentrated to dryness with a rotary evaporator. The crude mixture was purified by flash column chromatography on silica gel (60 230–400 mesh) using neat ethyl acetate as the eluent to give the title compound (244 mg, 91%) as white solid, m.p. 122–123°C. ¹H-NMR (500 MHz, in CDCl₃ at 25°C): δ 9.09 (1 H, d, *J* = 9.1 Hz), 7.82 (1 H, s), 6.66 (1 H, d, *J* = 9.1 Hz), 3.87 (3 H, s), 3.84 (3 H, s), 3.80 (3 H, s), 1.55 (9 H, s). ¹³C-NMR (125 MHz, CDCl₃): δ 155.2, 152.2, 141.4, 124.2, 124.0, 118.1, 106.8, 70.4, 61.5, 60.8, 55.9, 28.3. Anal. Calcd for C₁₄H₂₁NO₄: C, 62.90; H, 7.92; N, 5.24. Found: C, 63.04; H, 7.90; N 5.15. Crystals suitable for X-ray analysis were grown by slow solvent diffusion by layering hexane over a solution of the nitrone in dichloromethane.

Refinement

H atoms are treated by constrained refinement. The bond lengths of the hydrogen atoms to their parent atoms in six methyl groups are all equal to 0.96 Å while the others are equal to 0.93 Å.

Figures

(Z)-N-tert-Butyl-C-(2,3,4-trimethoxyphenyl)nitrone

Crystal data	
C ₁₄ H ₂₁ NO ₄	Z = 2
$M_r = 267.32$	$F_{000} = 288$
Triclinic, PT	$D_{\rm x} = 1.214 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 395-396 K
<i>a</i> = 8.7424 (15) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>b</i> = 9.5039 (17) Å	Cell parameters from 427 reflections
c = 9.8424 (17) Å	$\theta = -14 - 14^{\circ}$
$\alpha = 74.055 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 68.612 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 82.108 \ (3)^{\circ}$	Plate, colorless
V = 731.5 (2) Å ³	$0.50\times0.40\times0.40~mm$

Data collection

Siemens SMART CCD PLATFORM diffractometer	2563 independent reflections
Radiation source: fine-focus sealed tube	2189 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)	$k = -11 \rightarrow 11$
$T_{\min} = 0.857, T_{\max} = 0.965$	$l = -11 \rightarrow 11$
5580 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0678P)^2 + 0.113P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.124$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$
2563 reflections	$\Delta \rho_{\rm min} = -0.17 \ e \ {\rm \AA}^{-3}$
179 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.024 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O1	0.75304 (15)	1.17217 (13)	0.34565 (15)	0.0717 (4)
O2	1.29356 (14)	0.62646 (12)	0.30972 (13)	0.0647 (3)
O3	1.09014 (13)	0.54726 (11)	0.20004 (11)	0.0584 (3)
O4	0.82513 (12)	0.72922 (12)	0.16273 (12)	0.0610 (3)
N1	0.70119 (15)	1.11834 (13)	0.26398 (14)	0.0523 (3)
C1	1.00430 (18)	0.94615 (16)	0.31636 (17)	0.0518 (4)
H1	0.9838	1.0337	0.3462	0.062*
C2	1.13649 (18)	0.85577 (16)	0.33577 (17)	0.0532 (4)
H2	1.2046	0.8837	0.3767	0.064*
C3	1.16811 (17)	0.72379 (16)	0.29453 (16)	0.0496 (4)
C4	1.06241 (17)	0.68092 (15)	0.23628 (15)	0.0481 (3)
C5	0.93260 (17)	0.77314 (16)	0.21437 (15)	0.0481 (3)
C6	0.90073 (17)	0.90925 (16)	0.25308 (16)	0.0484 (3)
C7	0.76466 (18)	0.99913 (17)	0.22132 (17)	0.0526 (4)
H7	0.7175	0.9683	0.1642	0.063*
C8	0.55423 (19)	1.20292 (18)	0.22727 (18)	0.0600 (4)

supplementary materials

C9	0.5125 (3)	1.1466 (3)	0.1152 (3)	0.0883 (6)
Н93	0.4750	1.0486	0.1604	0.132*
Н92	0.6087	1.1466	0.0275	0.132*
H91	0.4275	1.2089	0.0867	0.132*
C10	0.4129 (2)	1.1846 (3)	0.3765 (2)	0.0886 (6)
H103	0.3178	1.2403	0.3611	0.133*
H102	0.4435	1.2190	0.4457	0.133*
H101	0.3880	1.0830	0.4170	0.133*
C11	0.6005 (3)	1.3618 (2)	0.1600 (2)	0.0835 (6)
H113	0.5067	1.4208	0.1458	0.125*
H112	0.6879	1.3701	0.0647	0.125*
H111	0.6363	1.3949	0.2268	0.125*
C12	1.4108 (2)	0.6695 (2)	0.3579 (3)	0.0795 (6)
H123	1.4613	0.7567	0.2879	0.119*
H122	1.4935	0.5924	0.3627	0.119*
H121	1.3569	0.6883	0.4557	0.119*
C13	1.0042 (3)	0.43237 (19)	0.3183 (2)	0.0809 (6)
H133	1.0439	0.4156	0.4007	0.121*
H132	1.0216	0.3447	0.2832	0.121*
H131	0.8889	0.4588	0.3514	0.121*
C14	0.8909 (2)	0.7105 (2)	0.0131 (2)	0.0747 (5)
H143	0.9072	0.8047	-0.0570	0.112*
H142	0.8155	0.6581	-0.0035	0.112*
H141	0.9942	0.6561	-0.0011	0.112*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0737 (8)	0.0711 (7)	0.0942 (9)	0.0155 (6)	-0.0461 (7)	-0.0434 (7)
O2	0.0582 (6)	0.0675 (7)	0.0777 (7)	0.0129 (5)	-0.0316 (6)	-0.0285 (6)
O3	0.0680 (7)	0.0514 (6)	0.0548 (6)	-0.0026 (5)	-0.0134 (5)	-0.0216 (5)
O4	0.0507 (6)	0.0757 (7)	0.0690 (7)	-0.0063 (5)	-0.0217 (5)	-0.0342 (6)
N1	0.0497 (7)	0.0544 (7)	0.0547 (7)	-0.0009 (5)	-0.0195 (5)	-0.0147 (6)
C1	0.0526 (8)	0.0492 (8)	0.0589 (9)	-0.0023 (6)	-0.0211 (7)	-0.0187 (6)
C2	0.0500 (8)	0.0579 (9)	0.0590 (9)	-0.0043 (6)	-0.0231 (7)	-0.0189 (7)
C3	0.0447 (7)	0.0540 (8)	0.0479 (8)	-0.0008 (6)	-0.0134 (6)	-0.0130 (6)
C4	0.0487 (8)	0.0488 (8)	0.0439 (7)	-0.0049 (6)	-0.0092 (6)	-0.0148 (6)
C5	0.0438 (7)	0.0551 (8)	0.0465 (7)	-0.0091 (6)	-0.0117 (6)	-0.0161 (6)
C6	0.0454 (7)	0.0512 (8)	0.0488 (8)	-0.0042 (6)	-0.0147 (6)	-0.0138 (6)
C7	0.0502 (8)	0.0571 (8)	0.0563 (8)	-0.0015 (6)	-0.0213 (7)	-0.0189 (7)
C8	0.0497 (8)	0.0659 (10)	0.0597 (9)	0.0058 (7)	-0.0200 (7)	-0.0102 (7)
C9	0.0826 (13)	0.1032 (15)	0.0964 (15)	0.0171 (11)	-0.0562 (12)	-0.0270 (12)
C10	0.0535 (10)	0.1182 (17)	0.0748 (12)	0.0084 (10)	-0.0133 (9)	-0.0105 (11)
C11	0.0779 (12)	0.0673 (11)	0.0897 (13)	0.0123 (9)	-0.0241 (10)	-0.0081 (10)
C12	0.0618 (10)	0.0927 (13)	0.1025 (14)	0.0184 (9)	-0.0449 (10)	-0.0404 (11)
C13	0.1072 (15)	0.0552 (9)	0.0737 (12)	-0.0161 (10)	-0.0179 (10)	-0.0171 (8)
C14	0.0801 (12)	0.0939 (13)	0.0658 (11)	-0.0018 (10)	-0.0364 (9)	-0.0298 (10)

Geometric parameters (Å, °)

O1—N1	1.2918 (16)	C8—C9	1.520 (3)
O2—C3	1.3586 (18)	C8—C10	1.520 (2)
O2—C12	1.421 (2)	С9—Н93	0.9600
O3—C4	1.3788 (17)	С9—Н92	0.9600
O3—C13	1.414 (2)	С9—Н91	0.9600
O4—C5	1.3739 (16)	C10—H103	0.9600
O4—C14	1.425 (2)	C10—H102	0.9600
N1—C7	1.299 (2)	C10—H101	0.9600
N1—C8	1.5240 (19)	C11—H113	0.9600
C1—C2	1.381 (2)	C11—H112	0.9600
C1—C6	1.396 (2)	C11—H111	0.9600
C1—H1	0.9300	C12—H123	0.9600
C2—C3	1.385 (2)	C12—H122	0.9600
С2—Н2	0.9300	C12—H121	0.9600
C3—C4	1.402 (2)	С13—Н133	0.9600
C4—C5	1.380 (2)	С13—Н132	0.9600
C5—C6	1.411 (2)	C13—H131	0.9600
C6—C7	1.445 (2)	C14—H143	0.9600
С7—Н7	0.9300	C14—H142	0.9600
C8—C11	1.518 (3)	C14—H141	0.9600
C3—O2—C12	117.46 (13)	Н93—С9—Н92	109.5
C4—O3—C13	113.76 (12)	С8—С9—Н91	109.5
C5—O4—C14	116.22 (12)	H93—C9—H91	109.5
O1—N1—C7	122.97 (12)	Н92—С9—Н91	109.5
O1—N1—C8	114.34 (12)	C8—C10—H103	109.5
C7—N1—C8	122.64 (13)	C8—C10—H102	109.5
C2—C1—C6	121.58 (13)	H103—C10—H102	109.5
C2-C1-H1	119.2	C8-C10-H101	109.5
С6—С1—Н1	119.2	H103—C10—H101	109.5
C1—C2—C3	120.34 (13)	H102—C10—H101	109.5
C1—C2—H2	119.8	C8—C11—H113	109.5
С3—С2—Н2	119.8	C8—C11—H112	109.5
O2—C3—C2	125.16 (13)	H113—C11—H112	109.5
O2—C3—C4	115.39 (13)	C8—C11—H111	109.5
C2—C3—C4	119.42 (13)	H113—C11—H111	109.5
O3—C4—C5	120.53 (13)	H112—C11—H111	109.5
O3—C4—C3	119.60 (13)	O2-C12-H123	109.5
C5—C4—C3	119.87 (13)	O2—C12—H122	109.5
O4—C5—C4	120.03 (12)	H123—C12—H122	109.5
O4—C5—C6	118.53 (13)	O2-C12-H121	109.5
C4—C5—C6	121.32 (13)	H123—C12—H121	109.5
C1—C6—C5	117.41 (13)	H122—C12—H121	109.5
C1—C6—C7	125.82 (13)	O3—C13—H133	109.5
C5—C6—C7	116.77 (13)	O3—C13—H132	109.5
N1—C7—C6	126.98 (14)	H133—C13—H132	109.5
N1—C7—H7	116.5	O3—C13—H131	109.5

supplementary materials

С6—С7—Н7	116.5	H133—C13—H131	109.5
С11—С8—С9	109.38 (16)	H132—C13—H131	109.5
C11-C8-C10	111.50 (16)	O4—C14—H143	109.5
C9—C8—C10	111.30 (17)	O4—C14—H142	109.5
C11—C8—N1	106.89 (14)	H143—C14—H142	109.5
C9—C8—N1	111.94 (14)	O4—C14—H141	109.5
C10—C8—N1	105.73 (13)	H143—C14—H141	109.5
С8—С9—Н93	109.5	H142—C14—H141	109.5
С8—С9—Н92	109.5		

